

Optimisation of Fantasy Premier League Squad using Linear Programming

April 22, 2023

Introduction

Project Inspiration

Data Analytics is starting to play a pivotal role in many sports teams and competitions as it empowers them to make more accurate decisions by analysing athletes and games better. It provides coaches of professional teams to study historical data on the team's performance, individual players' performance, create unique situations and other strategies for every match.

Additionally, data analytics of competitors' performance enables counter tactics to be devised to succeed against them. Data analytics in sports involves the use of statistics and mathematical principles. Sports analytics helps in improving the performance of a team or the performance of an individual. Data analytics in sports goes beyond traditional statistics to add accurate analysis to improve many aspects of the team and its players. Analytics is used to aid the team in optimising their performance for their games by developing tactics and tailoring solutions accordingly.

In this project, football was analysed as a sport for the purpose of building a fantasy football team and by using the concepts of Integer Programming, the objective was to optimise the best lineup for the fantasy football team, while considering several constraints, decision variables and assumptions.

Problem Statement

Fantasy Premier League (FPL) is a competition in Premier League football, in which fans create their own fantasy lineup of their ideal team according to the players' performances, talent, market value, individual accolades, and other criteria. The individual whose team accumulates the most points over the duration of the competition, depending on the real time performance of the actual players in each game week, will win attractive prizes from the competition organisers.

Participants have a budget of £100 million to select a squad of 15 players, with no more than three players from any one Premier League team. They must select 11 players to start, and 4 substitutes. Only these 11 starters can contribute to the total points tally, and substitutes are only taken into account when there are players in the starting 11 who do not play in the actual Premier League for that week, and the substitute who takes their place contributes to the total points instead of them.

Points are awarded based on various factors, including goals, assists, clean sheets, and bonus points, based on the real-time performance of the actual players in each game week.

Our project aims to find out what is the best possible fantasy lineup of 15 players that a busy fantasy premier league enthusiast can possibly create. This means **the fantasy lineup is only selected at the start of the season and left untouched for the whole season**.

Model

Objective Function

The goal for FPL participants is to maximise the total number of points achieved by their fantasy team across the whole season, which is a sum of points accumulated weekly for all weeks in the season. Therefore the objective function is

$$\max \sum_{j=1}^{m} \sum_{i=1}^{n} a_{i,j} x_{i,j}$$

where

j represents game week j from 1 to 38 (m = 38)

i represents players i from 1 to 741 (n = 741)

 $a_{i,i}$ represents the points gained by a player i in game week j

Decision Variables

For each player, we can assign a variable $x_{i,j} \in \{0,1\}$ that captures if player is part of the weekly squad that contributes to points, where

 $x_{i,j} \in \{0, 1\}$; 1 if player i is game week j's game squad of 11, 0 otherwise However, these starting 11 players per game week must be part of the 15 players in the fantasy linear home we introduce a new variable $\mathbf{r} \in \{0, 1\}$ that conturns if a player is it

fantasy lineup, hence we introduce a new variable $x_i \in \{0,1\}$ that captures if a player is in the fantasy lineup

 $x_{2_i} \in \{0, 1\}$; 1 if player i is in fantasy lineup, 0 otherwise

Within the fantasy lineup, there are starters and substitutes too, where starters will have priority to be included in the weekly 11 squad if they actually play that game week, where

starter_i $\in \{0, 1\}$; 1 if player i is a starter in fantasy lineup, 0 otherwise

If-else variables:

- $\boldsymbol{\delta}_i \in \{0, 1\}$; if player i plays in any week j, he must be included in the fantasy lineup
- γ_i ∈ {0, 1}; if a starter in the fantasy lineup plays, he must always be included in the weekly 11 team

• $\mathbf{\theta}_i \in \{0, 1\}$; if player is a starter, he must be part of the fantasy lineup

Constraints

Lineup constraints:

- 11 players in weekly game squad: $\sum_{i=1}^{n} x_{i,j} = 11 \forall j$
- 15 players in fantasy lineup: $\sum_{i=1}^{n} x_{i}^{2} = 15$
- Player i selected weekly game squad for week j ($x_{i,i} = 1$) is a part of fantasy lineup

$$\circ \sum_{j=1}^{m} x_{ij} \le m(1 - \boldsymbol{\delta}_i) \,\forall i$$

- $x_{i}^{i} = 1 \boldsymbol{\delta}_{i} \forall i$
- If player i is selected in any weekly game squad, $\sum_{j=1}^{m} x_{i,j} > 0$, $\boldsymbol{\delta}_{i} = 0$,

$$x2_{i} = 1$$
, else $\sum_{j=1}^{m} x_{i,j} = 0$, $\boldsymbol{\delta}_{i} = 1$, $x2_{i} = 0$

Substitute constraints:

• Only 11 starters out of 15 players in fantasy lineup: $\sum_{i=1}^{n} starter_i = 15$, which

indicates that remaining 4 players are substitutes

• Starter must be part of fantasy lineup

$$1 - x_{i}^{2} \leq 1 - \boldsymbol{\theta}_{i} \; \forall i$$

•
$$starter_{i} \leq \boldsymbol{\theta}_{i} \; \forall i$$

• If player i is in fantasy lineup, $x2_i = 1$, $\theta_i = 1$, $starter_i \le 1$, meaning player i can be a starter. Otherwise, if player i not in fantasy lineup, $x2_i = 0$,

and $\mathbf{\theta}_i = 0$, so starter_i = 0, hence player cannot be a starter

- Substitutes can only play if starters did not play that week
 - \circ played_{*i*,*j*} * starter_{*i*} $\leq \mathbf{\gamma}_{i,j} \forall i, j$
 - *played*_{i,j} is a data point that records if player i played in week j in the actual Premier League

$$\circ \quad x_{i,j} \ge \mathbf{\gamma}_{i,j} \quad \forall i$$

• If player i played in week j and is a starter, $played_{i,j} * starter_i = 1$,

 $\mathbf{\gamma}_{i,j} = 1, x_{i,j} = 1$, meaning player i must be in the weekly game squad. This means substitutes are only considered if starters in the fantasy lineup did not play in week j in the actual Premier League

Position Constraints:

- 15 players in Fantasy Lineup
 - 2 out of the 15 players must be goalkeepers: $\sum_{i}^{n} gk_{i}x2_{i} = 2$

• 5 out of the 15 players must be defenders:
$$\sum_{i}^{n} def_{i} x 2_{i} = 5$$

• 5 out of the 15 players must be midfielders:
$$\sum_{i}^{n} mid_{i}x2_{i} = 5$$

• 3 out of the 15 players must be forwards:
$$\sum_{i}^{n} fwd_{i}x2_{i} = 3$$

- 11 players in weekly game squad and starting squad
 - 1 out of the 11 players must be goalkeepers n

•
$$\sum_{i} gk_{i}x_{i,j} = 1 \forall k$$

• $\sum_{i}^{n} gk_{i}starter_{i} = 1$

• More than 3 players must be defenders

•
$$\sum_{i}^{n} def_{i} x_{i,j} \ge 3 \forall j$$

• $\sum_{i}^{n} def_{i} starter_{i} \ge 3$

 \circ $\,$ More than 1 player must be a forward $\,$

•
$$\sum_{i}^{n} fwd_{i}x_{i,j} \ge 1 \forall j$$

• $\sum_{i}^{n} fwd_{i}starter_{i} \ge 1$

Budget constraint:

Total fantasy team budget (15 players) is £100 million:
$$\sum_{i}^{n} c_{i} x_{i} \leq 1000$$

Club constraint:

-

- A maximum of 3 players from a single football club can be selected for the fantasy n

team:
$$\sum_{i=1} club_i x_i \le 3 \forall all \ 20 \ clubs \ in the Premier League$$

Assumptions

- 1. Best possible substitute is selected within constraints
- 2. The club a player plays for remains constant throughout the season, and is based off the club they are under at the end of the season
- 3. Player data on points scored, which week they played, position, and club is known and accurate

Results

Correctness of model

To test the correctness of the model, we compared the constraints with respect to the results obtained upon execution of the code. Firstly, in the final fantasy team, it is observed that 15 players form the fantasy team (refer to Appendix, Figure 1.0), following the position constraint of 15 players being selected from the pool of Premier League players.

Next, observing the starting 11 column, it is noted that the model is able to segregate the starting 11 from the overall 15 players selected in the team as evident from the 1 (included in starting 11) versus 0 (not included in starting 11).

After which, the numerical constraint on the various positions of players within the fantasy 15 such as number of goalkeepers, defenders, midfielders and forwards that comprises are kept intact as evident from the "Position" column (refer to Appendix, Figure 1.0). Moreover, this constraint is also applied to the starting 11 of the fantasy team, as well as the 11 players in the weekly game squad (refer to Appendix, Figure 1.0)

Furthermore, to ensure substitutes' points are only taken into account when the starter does not play in a particular game week, the lineup and substitute constraints were implemented in tandem to achieve optimal results. For example, from Appendix, Figure 1.1, Aaron Ramsdale does not play in game week 1,2, and 3, but plays in week 4 &5. Thus $x_{i,i}$ is 0 from week 1 to

3, and 1 from weeks 4 to 5. Therefore, he was substituted by 1 of the 4 substitutes, in game week 1 to 3, highlighting the correctness of the model. The same can be said about the other starting players.

Lastly, the final constraint that prevents more than 3 players from a single club (refer to Appendix, Figure 1.0, "Team" column) to be included in the fantasy 15 is operating accurately as based on the results of the model, none of the fantasy 15 players break the club constraint. Thus, the model is able to accurately provide an optimised points tally while working within the constraints of FPL.

Results of model

Unfortunately, results were not able to be obtained for the full 38 weeks due to a lack of computing power, hence a smaller subset of the problem with only 5 weeks was computed instead.

The results of the model are attached in the Appendix, with screenshots of the full code attached with the links to the GitHub repository and references to research links that provided us with guidance. The maximum points tally for this smaller problem is 451 (refer to Appendix, Figure 1.2), which is an average of 90.2 points per GW, which is comparable to top players on the leaderboard (refer to Appendix, Figure 1.3).

Appendix

References:

Dataset - https://github.com/vaastav/Fantasy-Premier-League/tree/master/data/2021-22

Code guidance -

https://medium.com/geekculture/linearly-optimising-teams-for-pl-fantasy-league-11931aed18 b7

Leaderboard -

https://fantasy.premierleague.com/leagues/314/standings/c?phase=10&page_new_entries=1 &page_standings=1

Constraints - https://fantasy.premierleague.com/

xi,1	xi,2	xi,3	xi,4	xi,5	Name	Team	Position	Starting 11	Fantasy lineup 耳
	0 0) () :	l 1	Aaron Ramsdale	Arsenal	GK	1	1
	1 1	L :	1 :	ι 1	Antonio Rüdiger	Chelsea	DEF	1	1
	0 1	L :	1 :	ι ο	Aymeric Laporte	Man City	DEF	1	1
	0 1	L :	1 :	l 1	Conor Gallagher	Crystal Palace	MID	1	1
	1 0) () () 1	Emmanuel Dennis	Watford	FWD	0	1
	1 1	L :	1 () ()	Hugo Lloris	Spurs	GK	0	1
	1 0) () () 1	Ismaila Sarr	Watford	MID	0	1
	1 1	L :	1 :	ι 1	Marcos Alonso	Chelsea	DEF	1	1
	1 1	L :	1 :	l 1	Mason Greenwood	Man Utd	MID	1	1
	1 1	L :	1 () ()	Michail Antonio	West Ham	FWD	0	1
	1 1	L :	1 :	L 1	Mohamed Salah	Liverpool	MID	1	1
	o c) () :	ι 1	Odsonne Edouard	Crystal Palace	FWD	1	1
	1 1	L :	1 :	L 1	Rúben Santos Gato Alves Dias	Man City	DEF	1	1
	1 1	L :	1 :	ι 1	SaÃ⁻d Benrahma	West Ham	MID	1	1
	1 1	L :	1 :	L O	Trent Alexander-Arnold	Liverpool	DEF	1	1

Figure 1.0 - The fantasy 15 generated upon running the model

Column1	played week 1	played week 2	played week 3	played week 4	played week 5	Starting 11	Fantasy lineup 耳
Aaron Ramsdale	0	0	0	1	1	1	1
Antonio Rüdiger	1	1	1	1	1	1	1
Aymeric Laporte	0	1	1	1	0	1	1
Conor Gallagher	0	1	1	1	1	1	1
Emmanuel Dennis	1	1	1	1	1	0	1
Hugo Lloris	1	1	1	1	1	0	1
Ismaila Sarr	1	1	1	1	1	0	1
Marcos Alonso	1	1	1	1	1	1	1
Mason Greenwood	1	1	1	1	1	1	1
Michail Antonio	1	1	1	1	0	0	1
Mohamed Salah	1	1	1	1	1	1	1
Odsonne Edouard	0	0	0	1	1	1	1
Rúben Santos Gato Alves Dias	1	1	1	1	1	1	1
SaÃ ⁻ d Benrahma	1	1	1	1	1	1	1
Trent Alexander-Arnold	1	1	1	1	0	1	1

Figure 1.1 - Aaron Ramsdale does not play in game week 1,2, and 3, but plays in week 4 &5, thus $x_{i,j}$ is 0 from week 1 to 3, and 1 from weeks 4 to 5.

In [64]: objective_value(model)

Out[64]: 451.0000000000057

Figure 1.2 - Maximum points tally from week 1 to 5

Rank	Team & Manager	GW	TOT
1 💊	Nothing2seeHere Fernando Ambursley	77	404
2	Harris St Germain Sean Harris	68	403
3 🔦	Forera ahmed zaki	72	398
4 🔦	algeria 23 viking Algérie	92	397
5 🔦	Rateta Ball FC Khalid Alawar	92	394
6 🔦	Zarra Utd Hassan Zareer	68	394
7 🔦	Soccer Savvy Steve Dryden	78	393
8 🔦	Schroeder Nicolas Walter	75	393
9 🔥	The Soft One Lynne McDonald	77	393

Figure 1.3 - Fantasy football leaderboard

Full working code

Github link to full repository: https://github.com/yuliangod/Optimisation-1D

n [7]:	using	g JuMP, Mosek	Tools												
in [8]:		rt CSV rt DataFrames													
[11]:	csv_d	f = CSV.read	("data.c	sv", Data	Frames.Data	Frame)			_		-				
	735	Zack Steffen	7	GK	44	Man City	0	0	0	0	0	0	0	0	0
	736	Zak Swanson	0	DEF	40	Arsenal	1	0	0	0	0	0	0	0	0
	737	Álvaro Fernández	31	GK	45	Man Utd	0	0	0	0	0	0	0	0	0
	738	Álvaro Fernández	31	GK	45	Brentford	0	0	1	0	0	0	0	0	0
	739	Álvaro Fernández	0	DEF	40	Man Utd	0	0	0	0	0	0	0	0	0
	740	Álvaro Fernández	0	DEF	40	Brentford	0	0	1	0	0	0	0	0	0
	741	Çaglar Söyüncü	66	DEF	49	Leicester	0	0	0	0	0	0	0	0	0
	•			_	_	_	_		_	_	_				
1 [12]:	<pre>cost gk = def = fwd = mid = club_ club</pre>	_points = csv = csv_df[:, "Gi csv_df[:, "Gi csv_df[:, "I csv_df[:, "I = csv_df[:, "I df = csv_df[:, "I df = csv_df[: = Matrix(clul	'now_cos ("] DEF"] HID"] (ID"] (, 6:6+1 ()_df)	9]	ints"]										

In [12]: total_points = csv_df[:, "total_points"]
 cost = csv_df[:, "now_cost"] gk = csv_df[:, "GK"] def = csv_df[:, "DEF"] fwd = csv_df[:, "FWD"] mid = csv_df[:, "MID"]

club_df = csv_df[:, 6:6+19]
club = Matrix(club_df)

#print(total_points, fwd, mid)
club_df

Out[12]: 741x20 DataErame

_			-															
	Out[12]:	741×2	20 DataFi	rame													71	6 rows omitted
		Row	Arsenal	Aston Villa	Brentford	Brighton	Burnley	Chelsea	Crystal Palace	Everton	Leeds	Leicester	Liverpool	Man City	Man Utd	Newcastle	Norwich	Southampton
			Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64	Int64
		1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		3	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
		4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		6	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
		7	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
		9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
<																		• • •

In [13]: points_df = csv_df[:, 7+19+4:7+19+4+37] points = Matrix(points_df) points_df

Out[13]:	741×3	88 DataFrame	е									716 rows	s omitted
	Row	total_points week 1	total_points week 2	total_points week 3	total_points week 4	total_points week 5	total_points week 6	total_points week 7	total_points week 8	total_points week 9	total_points week 10	total_points week 11	total_pc week 12
		Float64	Float64	Float64									
	1	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	
	2	7.0	2.0	5.0	8.0	1.0	2.0	1.0	7.0	12.0	2.0	1.0	
	3	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	
	4	0.0	0.0	0.0	6.0	9.0	3.0	6.0	2.0	3.0	10.0	7.0	
	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	6	2.0	2.0	8.0	2.0	2.0	2.0	2.0	-1.0	-1.0	7.0	1.0	
	7	8.0	4.0	3.0	10.0	2.0	11.0	5.0	2.0	0.0	0.0	0.0	
	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	9	6.0	2.0	5.0	2.0	2.0	2.0	2.0	0.0	1.0	5.0	9.0	

																			_
Out[14]:	741×3	8 DataF	rame														716 ro	ws omitte	ed
	Row	played week 1	played week 2	played week 3	played week 4	played week 5	played week 6	played week 7	played week 8	played week 9	played week 10	played week 11	played week 12	played week 13	played week 14	played week 15	played week 16		р У 1
		Float64	Float64	F															
	1	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	
	2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	3	0.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	
	4	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	6	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	
	7	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	

```
In [15]: model = Model(Mosek.Optimizer)
Out[15]: A JuMP Model
Feasibility problem with:
Variables: 0
Model mode: AUTOMATIC
CachingOptimizer state: EMPTY_OPTIMIZER
Solver name: Mosek
```

In [16]: n = length(cost) # no. of players
m = 38 # no. of game weeks
Out[16]: 38

Initialise variables

In [17]:	<pre>@variable(model, x[1:n, 1:m],Bin) @variable(model, x2[1:n],Bin) @variable(model, starter[1:n],Bin)</pre>	
Out[17]:	741-element Vector{VariableRef}:	-
	starter[1] starter[2]	
	starter[3]	
	starter[4]	
	starter[5]	
	starter[6]	
	starter[7]	
	starter[8] starter[9]	
	starter[9]	
	starter[1]	
	starter[12]	
	starter[13]	
	:	
	starter[730]	
	starter[731]	
	starter[732]	
	starter[733]	-

Decision variables

In [18]:	<pre>@variable(model, delta[1:n],Bin)</pre>	
	<pre>@variable(model, gamma[1:n,1:m], Bin)</pre>	
	<pre>@variable(model, theta[1:n], Bin)</pre>	
Out[19].	741-element Vector{VariableRef}:	
ouc[10].		
	theta[1]	
	theta[2]	
	theta[3]	
	theta[4]	
	theta[5]	
	theta[6]	
	theta[7]	
	theta[8]	
	theta[9]	
	theta[10]	
	theta[11]	
	theta[12]	
	theta[13]	
	theta[730]	
	theta[731]	
	theta[73]	
	theta[73]	
		Ŧ

No. of players per week constraint

In [19]: @constraint(model, [j=1:m], sum(x[i,j] for i in 1:n) == 11)

Out[19]:	38-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.ScalarAffineFunction{Float64}, MathOp
	ptInterface.EqualTo{Float64}}, ScalarShape}}:
	x[1,1] + x[2,1] + x[3,1] + x[4,1] + x[5,1] + x[6,1] + x[7,1] + x[8,1] + x[9,1] + x[10,1] + x[11,1] + x[12,1] + x[13,1] + x[1
	4,1] + x[15,1] + x[16,1] + x[17,1] + x[18,1] + x[19,1] + x[20,1] + x[21,1] + x[22,1] + x[23,1] + x[24,1] + x[25,1] + x[26,1]
	+ x[27,1] + x[28,1] + x[29,1] + x[30,1] + x[31,1] + x[32,1] + x[33,1] + x[34,1] + x[35,1] + x[36,1] + x[37,1] + x[38,1] + x[
	9,1] + x[40,1] + x[41,1] + x[42,1] + x[43,1] + x[44,1] + x[45,1] + x[46,1] + x[47,1] + x[48,1] + x[49,1] + x[50,1] + x[51,1]
	+ x[52,1] + x[53,1] + x[54,1] + x[55,1] + x[56,1] + x[57,1] + x[58,1] + x[59,1] + x[60,1] + x[61,1] + x[62,1] + x[63,1] + x[61,1] + x[
	4,1] + x[65,1] + x[66,1] + x[67,1] + x[68,1] + x[69,1] + x[70,1] + x[71,1] + x[72,1] + x[73,1] + x[74,1] + x[75,1] + x[76,1]
	+ x[77,1] + x[78,1] + x[79,1] + x[80,1] + x[81,1] + x[82,1] + x[83,1] + x[84,1] + x[85,1] + x[86,1] + x[87,1] + x[88,1] + x[
	9,1] + x[90,1] + x[91,1] + x[92,1] + x[93,1] + x[94,1] + x[95,1] + x[96,1] + x[97,1] + x[98,1] + x[99,1] + x[100,1] + x[101,1] + x
	1 + x[102,1] + x[103,1] + x[104,1] + x[105,1] + x[106,1] + x[107,1] + x[108,1] + x[109,1] + x[110,1] + x[111,1] + x[112,1] + x[112
	x[113,1] + x[114,1] + x[115,1] + x[116,1] + x[117,1] + x[118,1] + x[119,1] + x[120,1] + x[121,1] + x[122,1] + x[123,1]
	4,1] + x[125,1] + x[126,1] + x[127,1] + x[128,1] + x[129,1] + x[130,1] + x[131,1] + x[132,1] + x[133,1] + x[134,1] + x[135,1] + x[
	+ x[136,1] + x[137,1] + x[138,1] + x[139,1] + x[140,1] + x[141,1] + x[142,1] + x[143,1] + x[144,1] + x[145,1] + x[146,1] + x[146,1
	[147,1] + x[148,1] + x[149,1] + x[150,1] + x[151,1] + x[152,1] + x[153,1] + x[154,1] + x[155,1] + x[156,1] + x[157,1] +
	8,1] + x[159,1] + x[160,1] + x[161,1] + x[162,1] + x[163,1] + x[164,1] + x[165,1] + x[166,1] + x[167,1] + x[168,1] + x[169,1]

	No. of players in fantasy lineup constraint
In [20]:	<pre>@constraint(model, sum(x2[i] for i in 1:n) == 15)</pre>
Out[20]:	$\begin{array}{l} + x_{21} + x_{22} + x_{23} + x_{24} + x_{25} + x_{26} + x_{27} + x_{28} + x_{29} + x_{20} + x_{21} + x_{21} + x_{21} + x_{21} + x_{23} + x_{24} + x_{25} + x_{26} + x_{27} + x_{28} + x_{29} + x_{20} + x_{21} + x_{21} + x_{21} + x_{21} + x_{21} + x_{23} + x_{25} + x_{26} + x_{27} + x_{28} + x_{29} + x_{20} + x_{$
In [21]:	$ + x2_{250} + x2_{251} + x2_{252} + x2_{253} + x2_{255} + x2_{256} + x2_{257} + x2_{258} + x2_{259} + x2_{260} + x2_{261} + x2_{262} + x2_{263} + x2_{264} + x2_{265} + x2_{266} + x2_{266} + x2_{261} + x2_{261} + x2_{262} + x2_{263} + x2_{264} + x2_{265} + x2_{266} + x2_{26$
Out[21]:	<pre>741-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, Mat OptInterface.EqualTo{Float64}}, ScalarShape}}: x2[1] + delta[1] == 1.0 x2[2] + delta[2] == 1.0 x2[3] + delta[3] == 1.0 x2[4] + delta[5] == 1.0 x2[6] + delta[5] == 1.0 x2[7] + delta[7] == 1.0 x2[8] + delta[8] == 1.0 x2[9] + delta[9] == 1.0 x2[10] + delta[10] == 1.0 x2[11] + delta[11] == 1.0 x2[11] + delta[11] == 1.0 x2[12] + delta[12] == 1.0 x2[13] + delta[13] == 1.0</pre>

11	starters	and 4	subs	cons	traint
----	----------	-------	------	------	--------

In [22]: @constraint(model, sum(starter[i] for i in 1:n) == 11)
#@constraint(model, sum(x2[i]*(1-starter[i]) for i in 1:n) == 4)

$Out[22]: starter_1 + starter_2 + starter_3 + starter_4 + starter_5 + starter_6 + starter_7 + starter_8 + starter_9 + starter_{10} + starter_{11} + starter_{12} + starter_{13} + starter_{14} + s$
$+ starter_{14} + starter_{15} + starter_{16} + starter_{17} + starter_{18} + starter_{19} + starter_{20} + starter_{21} + starter_{22} + starter_{23} + starter_{24} + starter_{25} + starter_{26} + st$
+ starter ₂₆ + starter ₂₇ + starter ₂₈ + starter ₂₉ + starter ₃₀ + starter ₃₁ + starter ₃₂ + starter ₃₃ + starter ₃₄ + starter ₃₅ + starter ₃₆ + starter ₃₇
+ starter ₃₈ + starter ₃₉ + starter ₄₀ + starter ₄₁ + starter ₄₂ + starter ₄₃ + starter ₄₄ + starter ₄₅ + starter ₄₆ + starter ₄₇ + starter ₄₈ + starter ₄₉
+ starter ₅₀ + starter ₅₁ + starter ₅₂ + starter ₅₃ + starter ₅₄ + starter ₅₅ + starter ₅₆ + starter ₅₇ + starter ₅₈ + starter ₅₉ + starter ₆₀ + starter ₆₁
$+ starter_{62} + starter_{63} + starter_{64} + starter_{65} + starter_{66} + starter_{67} + starter_{68} + starter_{69} + starter_{70} + starter_{71} + starter_{72} + starter_{73} + starter_{74} + starter_{75} + starter_{74} + st$
+ starter ₇₄ + starter ₇₅ + starter ₇₆ + starter ₇₇ + starter ₇₈ + starter ₇₉ + starter ₈₀ + starter ₈₁ + starter ₈₂ + starter ₈₃ + starter ₈₄ + starter ₈₅
+ starter ₈₆ + starter ₈₇ + starter ₈₈ + starter ₈₉ + starter ₉₀ + starter ₉₁ + starter ₉₂ + starter ₉₃ + starter ₉₄ + starter ₉₅ + starter ₉₆ + starter ₉₇
+ starter ₉₈ + starter ₉₉ + starter ₁₀₀ + starter ₁₀₁ + starter ₁₀₂ + starter ₁₀₃ + starter ₁₀₄ + starter ₁₀₅ + starter ₁₀₆ + starter ₁₀₇ + starter ₁₀₈
$+ starter_{109} + starter_{110} + starter_{111} + starter_{112} + starter_{113} + starter_{114} + starter_{115} + starter_{116} + starter_{117} + starter_{118} + starter_{119} + starter_{1$
$+ starter_{120} + starter_{121} + starter_{122} + starter_{123} + starter_{124} + starter_{125} + starter_{126} + starter_{127} + starter_{128} + starter_{129} + starter_{130} + starter_{129} + starter_{1$
+ starter ₁₃₁ + starter ₁₃₂ + starter ₁₃₃ + starter ₁₃₄ + starter ₁₃₅ + starter ₁₃₆ + starter ₁₃₇ + starter ₁₃₈ + starter ₁₃₉ + starter ₁₄₀ + starter ₁₄₁
$+ starter_{142} + starter_{143} + starter_{144} + starter_{145} + starter_{146} + starter_{147} + starter_{148} + starter_{149} + starter_{150} + starter_{151} + starter_{152} + starter_{152} + starter_{153} + starter_{154} + starter_{1$
+ starter ₁₅₃ + starter ₁₅₄ + starter ₁₅₅ + starter ₁₅₆ + starter ₁₅₇ + starter ₁₅₈ + starter ₁₅₉ + starter ₁₆₀ + starter ₁₆₁ + starter ₁₆₂ + starter ₁₆₃
+ starter ₁₆₄ + starter ₁₆₅ + starter ₁₆₆ + starter ₁₆₇ + starter ₁₆₈ + starter ₁₆₉ + starter ₁₇₀ + starter ₁₇₁ + starter ₁₇₂ + starter ₁₇₃ + starter ₁₇₄
i dentes i

In [23]:	<pre># starter must be part of 15 fantasy team @constraint(model, [i=1:n], 1-x2[i] <= 1-theta[i]) @constraint(model, [i=1:n], starter[i] <= theta[i])</pre>
Out[23]:	741-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.ScalarAffineFunction{Float64}, MathO
	starter[730] - theta[730] <= 0.0

Only play subs if starters did not play that week constraint

	<pre>#@constraint(model, [i=1:n, j=1:m], x[i,j] >= played[i,j]*starter[i])</pre>
In [25]:	<pre># if starter played, must always include within the lineup @constraint(model, [i=1:n, j=1:m], played[i,j]*starter[i] <= gamma[i,j]) @constraint(model, [i=1:n, j=1:m], x[i,j] >= gamma[i,j])</pre>
Out[25]:	741x38 Matrix{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOpt terface.GreaterThan{Float64}}, ScalarShape}}:
	x[1,1] = gama[1,1] >= 0.0 $x[1,38] = gama[1,38] >= 0.0$
	x[2,31] - gamma[2,1] >= 0.0 $x[2,38] - gamma[2,38] >= 0.0$
	$\{[2,3]\}$ = gama[2,1] >= 0.0 $\{[2,33]\}$ = gama[2,33] >= 0.0
	x[4,1] = gamma[4,1] >= 0.0 $x[4,33]$ = gamma[4,33] >= 0.0
	x[5,1] - gamma[5,1] >= 0.0 $x[5,38] - gamma[5,38] >= 0.0$
	x[6,1] - gamma[6,1] >= 0.0 x[6,38] - gamma[6,38] >= 0.0
	x[7,1] - gamma[7,1] >= 0.0 x[7,38] - gamma[7,38] >= 0.0
	x[8,1] - gamma[8,1] >= 0.0 x[8,38] - gamma[8,38] >= 0.0
	x[9,1] - gamma[9,1] >= 0.0 x[9,38] - gamma[9,38] >= 0.0
	x[10,1] - gamma[10,1] >= 0.0 x[10,38] - gamma[10,38] >= 0.0
	x[11,1] - gamma[11,1] >= 0.0 x[11,38] - gamma[11,38] >= 0.0
	x[12,1] - gamma[12,1] >= 0.0 x[12,38] - gamma[12,38] >= 0.0
	x[13,1] - gamma[13,1] >= 0.0 x[13,38] - gamma[13,38] >= 0.0
	x[730,1] - gamma[730,1] >= 0.0 x[730,38] - gamma[730,38] >= 0.0
	x[731,1] - gamma[731,1] >= 0.0 x[731,38] - gamma[731,38] >= 0.0
	x[732,1] - gamma[732,1] >= 0.0 x[732,38] - gamma[732,38] >= 0.0

In [26]: # ij less than il starters played that week, num of subs can be more than 0
#@constraint(model, [j=1:m], 11 - sum(×[i,j]*starter[i] for i in 1:n) <= 11*(1-gamma[j]))
#@constraint(model, [j=1:m], sum(x[i,j]*(1-starter[i]) for i in 1:n) <= 4*(1-gamma[j]))</pre>

Position constraints

15 overall fantasy squad constraint

In [27]: @constraint(model, sum(gk[i] * x2[i] for i in 1:n) == 2)

 $0ut[27]: x2_4 + x2_{19} + x2_{27} + x2_{34} + x2_{37} + x2_{43} + x2_{49} + x2_{51} + x2_{62} + x2_{67} + x2_{72} + x2_{79} + x2_{94} + x2_{100} + x2_{112} + x2_{134} + x2_{157} + x2_{164} + x2_{167} + x2_{1$

 $+ x_{2_{168}} + x_{2_{169}} + x_{2_{172}} + x_{2_{193}} + x_{2_{196}} + x_{2_{198}} + x_{2_{199}} + x_{2_{207}} + x_{2_{226}} + x_{2_{230}} + x_{2_{237}} + x_{2_{254}} + x_{2_{256}} + x_{2_{257}} + x_{2_{257}}$

 $+ x 2_{632} + x 2_{640} + x 2_{675} + x 2_{679} + x 2_{688} + x 2_{703} + x 2_{705} + x 2_{706} + x 2_{712} + x 2_{718} + x 2_{724} + x 2_{735} + x 2_{737} + x 2_{738} = 2.0$

In [28]: @constraint(model, sum(def[i] * x2[i] for i in 1:n) == 5)

 $\begin{aligned} & \text{Out[28]:} \quad x 2_2 + x 2_6 + x 2_{13} + x 2_{14} + x 2_{21} + x 2_{25} + x 2_{28} + x 2_{41} + x 2_{44} + x 2_{45} + x 2_{56} + x 2_{61} + x 2_{66} + x 2_{68} + x 2_{69} + x 2_{73} + x 2_{75} + x 2_{76} + x 2_{71} + x 2_{78} + x 2_{80} + x 2_{81} + x 2_{82} + x 2_{83} + x 2_{84} + x 2_{85} + x 2_{86} + x 2_{88} + x 2_{90} + x 2_{92} + x 2_{97} + x 2_{98} + x 2_{101} + x 2_{110} + x 2_{115} + x 2_{116} + x 2_{119} \\ & + x 2_{122} + x 2_{127} + x 2_{128} + x 2_{131} + x 2_{133} + x 2_{135} + x 2_{137} + x 2_{138} + x 2_{139} + x 2_{143} + x 2_{144} + x 2_{145} + x 2_{116} + x 2_{110} + x 2_{115} + x 2_{151} + x 2_{217} + x 2_{219} + x 2_{219} + x 2_{221} + x 2_{221} + x 2_{221} + x 2_{219} + x 2_{210} + x 2_{211} + x 2_{213} + x 2_{216} + x 2_{268} + x 2_{279} + x 2_{213} + x 2_{230} + x 2_{310} + x 2_{31}$

In [29]: @constraint(model, sum(mid[i] * x2[i] for i in 1:n) == 5)

<pre>In [29]: @constraint(model, sum(mid[i] * x2[i] for i in 1:n) == 5)</pre>
$Out[\texttt{29}]: x2_3 + x2_5 + x2_7 + x2_{10} + x2_{12} + x2_{15} + x2_{17} + x2_{18} + x2_{20} + x2_{22} + x2_{23} + x2_{24} + x2_{26} + x2_{29} + x2_{31} + x2_{32} + x2_{33} + x2_{35} + x2_{38} + x2_{42} + x2_{42} + x2_{44} + x2_{44$
$+ x2_{46} + x2_{47} + x2_{48} + x2_{52} + x2_{53} + x2_{54} + x2_{57} + x2_{58} + x2_{60} + x2_{65} + x2_{70} + x2_{71} + x2_{74} + x2_{87} + x2_{89} + x2_{91} + x2_{93} + x2_{95} + x2_{96} + x2$
$+ x2_{99} + x2_{102} + x2_{103} + x2_{104} + x2_{105} + x2_{106} + x2_{107} + x2_{108} + x2_{113} + x2_{117} + x2_{118} + x2_{120} + x2_{123} + x2_{126} + x2_{129} + x2_{130} + x2_{132} + x2_{130} + x2_{130}$
$+ x2_{136} + x2_{140} + x2_{141} + x2_{142} + x2_{148} + x2_{149} + x2_{152} + x2_{154} + x2_{158} + x2_{159} + x2_{160} + x2_{166} + x2_{171} + x2_{173} + x2_{174} + x2_{175} + x2_{176} + x2_{176$
$+ x2_{178} + x2_{180} + x2_{183} + x2_{186} + x2_{187} + x2_{189} + x2_{191} + x2_{195} + x2_{200} + x2_{205} + x2_{206} + x2_{209} + x2_{212} + x2_{218} + x2_{223} + x2_{225} + x2_{225} + x2_{216} + x2_{216$
$+ x2_{232} + x2_{233} + x2_{235} + x2_{238} + x2_{243} + x2_{244} + x2_{245} + x2_{247} + x2_{248} + x2_{250} + x2_{251} + x2_{257} + x2_{258} + x2_{259} + x2_{260} + x2_{261} + x2_{265} + x2_{265$
$+ x2_{270} + x2_{271} + x2_{272} + x2_{274} + x2_{276} + x2_{277} + x2_{278} + x2_{280} + x2_{284} + x2_{285} + x2_{287} + x2_{288} + x2_{290} + x2_{291} + x2_{293} + x2_{294} + x2_{295} + x2_{295} + x2_{297} + x2_{298} + x2_{294} + x2_{295} + x2_{295} + x2_{297} + x2_{298} + x2_{298$
$+ x 2_{296} + x 2_{301} + x 2_{302} + x 2_{303} + x 2_{304} + x 2_{306} + x 2_{310} + x 2_{311} + x 2_{312} + x 2_{315} + x 2_{321} + x 2_{325} + x 2_{328} + x 2_{329} + x 2_{331} + x 2_{332} + x 2_{333} + x 2_{334} + x 2_{344} + x 2_{346} + x $
$+ x 2_{338} + x 2_{342} + x 2_{343} + x 2_{349} + x 2_{351} + x 2_{355} + x 2_{358} + x 2_{360} + x 2_{362} + x 2_{363} + x 2_{364} + x 2_{366} + x 2_{372} + x 2_{378} + x 2_{380} + x 2_{382} + x 2_{383} + x 2_{384} + x $
$+ x2_{385} + x2_{386} + x2_{389} + x2_{394} + x2_{395} + x2_{397} + x2_{399} + x2_{401} + x2_{404} + x2_{413} + x2_{417} + x2_{418} + x2_{420} + x2_{421} + x2_{422} + x2_{425} + x2_{429} + x2_{429$
$+ x2_{430} + x2_{432} + x2_{434} + x2_{435} + x2_{436} + x2_{437} + x2_{438} + x2_{411} + x2_{447} + x2_{449} + x2_{451} + x2_{452} + x2_{455} + x2_{458} + x2_{460} + x2_{464} + x2_{466} + x2_{46} + x2_{466} + x2_{46} + x$
$+ x 2_{469} + x 2_{470} + x 2_{471} + x 2_{473} + x 2_{475} + x 2_{476} + x 2_{478} + x 2_{480} + x 2_{486} + x 2_{487} + x 2_{490} + x 2_{493} + x 2_{494} + x 2_{500} + x 2_{504} + x 2_{505} + x 2_{507} + x $
$+ x 2_{508} + x 2_{509} + x 2_{510} + x 2_{513} + x 2_{514} + x 2_{515} + x 2_{516} + x 2_{517} + x 2_{518} + x 2_{519} + x 2_{520} + x 2_{521} + x 2_{527} + x 2_{528} + x 2_{530} + x 2_{535} + x 2_{538} + x 2_{516} + x 2_{517} + x 2_{518} + x 2_{519} + x $
$+ x2_{540} + x2_{541} + x2_{546} + x2_{548} + x2_{551} + x2_{552} + x2_{553} + x2_{556} + x2_{559} + x2_{560} + x2_{562} + x2_{563} + x2_{570} + x2_{571} + x2_{572} + x2_{574} + x2_{576} + x2_{576$
$+ x_{2576}^{2} + x_{2577}^{2} + x_{2580}^{2} + x_{2582}^{2} + x_{2584}^{2} + x_{2585}^{2} + x_{2586}^{2} + x_{2593}^{2} + x_{2599}^{2} + x_{2608}^{2} + x_{2614}^{2} + x_{2615}^{2} + x_{2616}^{2} + x_$
$+ x_{2627}^2 + x_{2638}^2 + x_{2633}^2 + x_{2636}^2 + x_{2637}^2 + x_{2638}^2 + x_{2639}^2 + x_{2639}^2 + x_{2641}^2 + x_{2644}^2 + x_{2646}^2 + x_{2648}^2 + x_{2653}^2 + x_{2654}^2 + x_{2655}^2 + x_{2656}^2 + x_{265}^2 + x_{26}^2 + x_{26}^2 + x_{26}^2 + x_{26}^2 + x_{26}^2 + x_{26}^2 + x_{26}^2$
$+ x_{2658} + x_{2659} + x_{2660} + x_{2660} + x_{2664} + x_{2666} + x_{2667} + x_{2670} + x_{2671} + x_{2676} + x_{2678} + x_{2685} + x_{2686} + x_{2689} + x_{2690} + x_{2691} + x_{2691} + x_{2671} + x_{2676} + x_{2678} + x_{2685} + x_{2686} + x_{2687} + x_{2689} + x_{2689$
$+ x 2_{692} + x 2_{697} + x 2_{698} + x 2_{699} + x 2_{700} + x 2_{719} + x 2_{716} + x 2_{717} + x 2_{720} + x 2_{727} + x 2_{721} + x 2_{731} + x 2_{732} + x 2_{733} = 5.0$

In [30]: @constraint(model, sum(fwd[i] * x2[i] for i in 1:n) == 3)

 $\begin{aligned} \text{Out[30]:} \quad & x2_1 + x2_8 + x2_9 + x2_{11} + x2_{16} + x2_{30} + x2_{36} + x2_{39} + x2_{40} + x2_{55} + x2_{59} + x2_{63} + x2_{64} + x2_{109} + x2_{111} + x2_{114} + x2_{121} + x2_{124} + x2_{125} \\ & + x2_{147} + x2_{155} + x2_{161} + x2_{162} + x2_{165} + x2_{182} + x2_{184} + x2_{188} + x2_{194} + x2_{197} + x2_{201} + x2_{208} + x2_{216} + x2_{221} + x2_{228} + x2_{229} + x2_{241} \\ & + x2_{249} + x2_{253} + x2_{264} + x2_{279} + x2_{286} + x2_{313} + x2_{34} + x2_{326} + x2_{335} + x2_{341} + x2_{354} + x2_{356} + x2_{361} + x2_{367} + x2_{368} + x2_{374} \\ & + x2_{377} + x2_{381} + x2_{391} + x2_{392} + x2_{393} + x2_{423} + x2_{426} + x2_{463} + x2_{474} + x2_{499} + x2_{501} + x2_{503} + x2_{506} + x2_{566} + x2_{566} + x2_{566} + x2_{589} + x2_{597} + x2_{605} + x2_{613} + x2_{613} + x2_{629} + x2_{631} \\ & + x2_{650} + x2_{651} + x2_{651} + x2_{657} + x2_{666} + x2_{666} + x2_{677} + x2_{668} + x2_{666} + x2_{666} + x2_{714} + x2_{726} = 3.0 \end{aligned}$

11 game week constraint and starter constraint

In [31]: @constraint(model, [j=1:m], sum(gk[i]*x[i,j] for i in 1:n) == 1) @constraint(model, sum(gk[i]*starter[i] for i in 1:n) == 1)

In [32]: @constraint(model, [j=1:m], sum(def[i]*x[i,j] for i in 1:n) >= 3) @constraint(model, sum(def[i]*starter[i] for i in 1:n) >= 3)

Out[32]: $starter_2 + starter_6 + starter_{13} + starter_{14} + starter_{21} + starter_{25} + starter_{28} + starter_{41} + starter_{44} + starter_{45} + starter_{50} + starter_{56} + starter_{5$ $+ starter_{61} + starter_{66} + starter_{69} + starter_{73} + starter_{75} + starter_{76} + starter_{77} + starter_{78} + starter_{80} + starter_{81} + starter_{82} + starter_{81} + starter_{82} + starter_{81} + starter_{82} + starter_{81} + starter_{82} + starter_{83} + starter_{84} + st$ $+ starter_{83} + starter_{84} + starter_{85} + starter_{86} + starter_{88} + starter_{90} + starter_{92} + starter_{97} + starter_{98} + starter_{101} + starter_{110} + starter_{115} + sta$ $+ starter_{116} + starter_{119} + starter_{122} + starter_{127} + starter_{128} + starter_{131} + starter_{133} + starter_{135} + starter_{137} + starter_{138} + starter_{139} + starter_{1$ $+ starter_{143} + starter_{144} + starter_{145} + starter_{166} + starter_{150} + starter_{151} + starter_{153} + starter_{156} + starter_{163} + starter_{170} + starter_{177} + starter_{177} + starter_{178} + starter_{188} + starter_{1$ + starter₁₇₉ + starter₁₈₁ + starter₁₈₅ + starter₁₉₀ + starter₁₉₂ + starter₂₀₂ + starter₂₀₃ + starter₂₀₄ + starter₂₁₀ + starter₂₁₁ + starter₂₁₃ $+ starter_{214} + starter_{215} + starter_{217} + starter_{219} + starter_{222} + starter_{224} + starter_{227} + starter_{231} + starter_{234} + starter_{239} + starter_{240} + starter_{2$ + starter₂₆₂ + starter₂₆₄ + starter₂₅₂ + starter₂₅₅ + starter₂₆₅ + starter₂₆₆ + starter₂₆₈ + starter₂₆₈ + starter₂₇₃ + starter₂₈₁ $+ starter_{289} + starter_{292} + starter_{297} + starter_{298} + starter_{299} + starter_{300} + starter_{305} + starter_{308} + starter_{314} + starter_{316} + starter_{3$ $+ starter_{317} + starter_{318} + starter_{320} + starter_{323} + starter_{330} + starter_{334} + starter_{337} + starter_{339} + starter_{340} + starter_{345} + starter_{345} + starter_{346} + starter_{3$ $+ starter_{348} + starter_{350} + starter_{352} + starter_{353} + starter_{359} + starter_{365} + starter_{369} + starter_{370} + starter_{373} + starter_{376} + starter_{379} + starter_{3$ $+ starter_{384} + starter_{398} + starter_{400} + starter_{402} + starter_{403} + starter_{406} + starter_{407} + starter_{408} + starter_{409} + starter_{410} + starter_{412} + starter_{4$ $+ starter_{414} + starter_{415} + starter_{416} + starter_{429} + starter_{422} + starter_{427} + starter_{433} + starter_{440} + starter_{442} + starter_{443} + starter_{444} + starter_{4$ $+ starter_{455} + starter_{466} + starter_{488} + starter_{450} + starter_{453} + starter_{454} + starter_{456} + starter_{457} + starter_{461} + starter_{468} + starter_{472} + starter_{456} + starter_{4$ $+ starter_{479} + starter_{481} + starter_{482} + starter_{483} + starter_{484} + starter_{488} + starter_{499} + starter_{491} + starter_{492} + starter_{495} + starter_{497} + starter_{4$ $+ starter_{502} + starter_{511} + starter_{522} + starter_{525} + starter_{526} + starter_{531} + starter_{532} + starter_{534} + starter_{537} + starter_{537} + starter_{539} + starter_{5$ $+ starter_{542} + starter_{543} + starter_{544} + starter_{547} + starter_{554} + starter_{555} + starter_{557} + starter_{561} + starter_{564} + starter_{569} + starter_{577} + starter_{564} + starter_{569} + starter_{578} + starter_{569} + starter_{5$ $+ starter_{575} + starter_{579} + starter_{583} + starter_{587} + starter_{588} + starter_{590} + starter_{591} + starter_{592} + starter_{595} + starter_{596} + starter_{5$ $+ starter_{600} + starter_{602} + starter_{610} + starter_{612} + starter_{618} + starter_{619} + starter_{621} + starter_{622} + starter_{625} + starter_{630} + starter_{620} + starter_{6$ + $starter_{634}$ + $starter_{642}$ + $starter_{643}$ + $starter_{645}$ + $starter_{645}$ + $starter_{655}$ + $starter_{655}$ + $starter_{656}$ + $starter_{672}$ + $starter_{672}$ + $starter_{672}$ + $starter_{672}$ + $starter_{672}$ + $starter_{672}$ + $starter_{673}$ + $starter_{672}$ + $starter_{673}$ + $starter_$ + $starter_{681}$ + $starter_{682}$ + $starter_{683}$ + $starter_{694}$ + $starter_{695}$ + $starter_{701}$ + $starter_{702}$ + $starter_{704}$ + $starter_{707}$ + $starter_{707}$ + $starter_{707}$ + $starter_{707}$ $+ starter_{708} + starter_{710} + starter_{711} + starter_{713} + starter_{719} + starter_{721} + starter_{723} + starter_{725} + starter_{728} + starter_{729} + starter_{730} + starter_{710} + starter_{7$ $+ starter_{734} + starter_{736} + starter_{739} + starter_{740} + starter_{741} \ge 3.0$

In [33]: @constraint(model, [j=1:m], sum(fwd[i]*x[i,j] for i in 1:n) >= 1) @constraint(model, sum(fwd[i]*starter[i] for i in 1:n) >= 1)

 $\begin{aligned} & \text{Out[33]:} \quad starter_1 + starter_8 + starter_{11} + starter_{14} + starter_{16} + starter_{36} + starter_{39} + starter_{40} + starter_{55} + starter_{59} + starter_{61} + starter_{12} + starter_{12} + starter_{12} + starter_{14} + starter_{155} + starter_{16} + starter_{16} + starter_{12} + starter_{21} + starter_{21} + starter_{22} + starter_{21} + starter_{22} + starter_{21} + starter_{22} + starter_{24} + starter_{24} + starter_{25} + starter_{26} + starter_{279} + starter_{28} + starter_{28} + starter_{31} + starter_{31} + starter_{32} + starter_{31} + starter_{32} + starter_{33} + starter_{31} + starter_{32} + starter_{33} + starter_{31} + starter_{32} + starter_{32} + starter_{32} + starter_{32} + starter_{32} + starter_{33} + starter_{34} + starter_{35} + starter_{34} + starter_{36} + starter_{36} + starter_{36} + starter_{39} + starter_{30} + starter_{50} + start$

```
Cost constraint
```

In [34]:	<pre>@constraint(model, sum(cost[i] * x2[i] for i in 1:n) <= 1000)</pre>
Out[34]:	$53x2_1 + 54x2_2 + 46x2_3 + 51x2_4 + 44x2_5 + 51x2_6 + 53x2_7 + 45x2_8 + 57x2_9 + 45x2_{10} + 48x2_{11} + 53x2_{12} + 43x2_{13} + 43x2_{14} + 56x2_{15} + 58x2_{16} + 58x2_{1$
	$+45x2_{16}+59x2_{17}+45x2_{18}+43x2_{19}+52x2_{20}+40x2_{21}+48x2_{22}+45x2_{23}+58x2_{24}+40x2_{25}+44x2_{26}+43x2_{27}+49x2_{28}+58x2_{29}$
	$+81x2_{30}+51x2_{31}+45x2_{32}+55x2_{33}+61x2_{34}+43x2_{35}+67x2_{36}+47x2_{37}+50x2_{38}+45x2_{39}+54x2_{40}+46x2_{41}+50x2_{42}+39x2_{43}+38x2_{43}+38x2_{44}+38x$
	$+ 39x2_{44} + 73x2_{45} + 50x2_{46} + 52x2_{47} + 49x2_{48} + 39x2_{49} + 49x2_{50} + 40x2_{51} + 48x2_{52} + 47x2_{53} + 45x2_{54} + 76x2_{55} + 61x2_{56} + 56x2_{57} + 56$
	$+45x2_{58}+53x2_{59}+44x2_{60}+44x2_{61}+39x2_{62}+52x2_{63}+48x2_{64}+52x2_{65}+47x2_{66}+40x2_{67}+44x2_{68}+60x2_{69}+45x2_{70}+57x2_{71}+57x2_{71}+10x2_{72}+10x$
	$+45x2_{72}+39x2_{73}+62x2_{74}+40x2_{75}+40x2_{76}+45x2_{77}+45x2_{78}+42x2_{79}+44x2_{80}+47x2_{81}+39x2_{82}+46x2_{83}+40x2_{84}+46x2_{85}+46x$
	$+45x2_{86}+45x2_{87}+56x2_{88}+45x2_{89}+52x2_{90}+55x2_{91}+40x2_{92}+70x2_{93}+45x2_{94}+57x2_{95}+43x2_{96}+45x2_{97}+39x2_{98}+48x2_{99}+58x2_{99}+58x2_{91}+40x2_{92}+70x2_{93}+45x2_{94}+57x2_{95}+43x2_{95}+45x2_{97}+39x2_{98}+48x2_{99}+58x2_{99}+58x2_{91}+40x2_{92}+70x2_{93}+45x2_{94}+57x2_{95}+43x2_{95}+45x2_{97}+39x2_{98}+48x2_{99}+58x2_{99}+58x2_{91}+40x2_{92}+70x2_{93}+45x2_{94}+57x2_{95}+43x2_{95}+45x2_{97}+39x2_{98}+48x2_{99}+58x2_{99}+58x2_{91}+40x2_{92}+70x2_{93}+45x2_{94}+57x2_{95}+43x2_{95}+45x2_{97}+39x2_{98}+48x2_{99}+58x2_{99}+58x2_{91}+40x2_{92}+70x2_{93}+45x2_{94}+57x2_{95}+43x2_{95}+45x2_{97}+39x2_{98}+48x2_{99}+58x2_{99}+58x2_{91}+40x2_{92}+70x2_{93}+48x2_{94}+57x2_{95}+43x2_{95}+45x2_{97}+39x2_{98}+48x2_{99}+48x$
	$+ 40x_{210} + 39x_{210} + 45x_{2102} + 50x_{2103} + 116x_{2104} + 57x_{2105} + 52x_{2106} + 67x_{2107} + 53x_{2108} + 71x_{2109} + 42x_{2110} + 45x_{2111} + 43x_{2112} + 50x_{2110} + 50$
	$+ 45x2_{113} + 50x2_{114} + 40x2_{115} + 39x2_{116} + 45x2_{117} + 45x2_{118} + 44x2_{119} + 45x2_{120} + 65x2_{121} + 45x2_{122} + 44x2_{123} + 63x2_{124} + 59x2_{125} + 50x2_{125} + 5$
	$+ 56x2_{126} + 43x2_{127} + 40x2_{128} + 50x2_{129} + 79x2_{130} + 44x2_{131} + 48x2_{132} + 44x2_{133} + 40x2_{134} + 39x2_{135} + 45x2_{136} + 44x2_{137} + 40x2_{138} + 4$
	$+ 47x2_{139} + 45x2_{140} + 60x2_{141} + 49x2_{142} + 40x2_{143} + 42x2_{144} + 49x2_{145} + 48x2_{146} + 122x2_{147} + 45x2_{148} + 50x2_{149} + 42x2_{150} + 56x2_{151} + $
	$+ 44x2_{152} + 44x2_{153} + 47x2_{154} + 45x2_{155} + 40x2_{156} + 40x2_{157} + 55x2_{158} + 45x2_{159} + 60x2_{160} + 45x2_{161} + 77x2_{162} + 42x2_{163} + 40x2_{164} + 4$
	$+ 60x_{2165} + 45x_{2166} + 43x_{2167} + 44x_{2168} + 50x_{2169} + 42x_{2170} + 45x_{2171} + 47x_{2172} + 50x_{2173} + 63x_{2174} + 54x_{2175} + 49x_{2176} + 45x_{2177} + 4$
	$+ 45x2_{178} + 44x2_{179} + 83x2_{180} + 40x2_{181} + 48x2_{182} + 45x2_{183} + 77x2_{184} + 44x2_{185} + 57x2_{186} + 43x2_{187} + 52x2_{188} + 55x2_{189} + 40x2_{190} + 4$
	$+59x2_{191} + 40x2_{192} + 62x2_{193} + 84x2_{194} + 45x2_{195} + 61x2_{196} + 57x2_{197} + 39x2_{198} + 40x2_{199} + 45x2_{200} + 45x2_{201} + 46x2_{202} + 45x2_{203}$

No. of players from same club constraint

In [35]: @constraint(model, [c=1:20], sum(club[i,c] * x2[i] for i in 1:n) .<= 3)</pre>

Out[35]: 20-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathO

20-element Vector{ConstraintRef{Model, MathOptInterface.ConstraintIndex{MathOptInterface.ScalarAffineFunction{Float64}, MathOptInterface.LessThan{Float64}, ScalarShape}: x2[4] + x2[20] + x2[22] + x2[25] + x2[62] + x2[62] + x2[95] + x2[94] + x2[107] + x2[117] + x2[150] + x2[197] + x2[205] + x2 [229] + x2[242] + x2[243] + x2[245] + x2[263] + x2[263] + x2[551] + x2[561] + x2[561] + x2[573] + x2[609] + x2[619] + x2[60] + x2[60] + x2[60] + x2[57] + x2[734] + x2[734] + x2[736] + x2[505] + x2[60] + x2[60] + x2[60] + x2[67] + x2[27] + x2[10] + x2[111] + x2[113] + x2[142] + x2[162] + x2[206] + x2[207] + x2[27] + x2[263] + x2[244] + x2[293] + x2[247] + x2[273] + x2[246] + x2[246] + x2[246] + x2[247] + x2[277] + x2[273] + x2[248] + x2[249] + x2[27] + x2[240] + x2[27] + x2[240] + x2[27] + x2[27] + x2[261] + x2[261] + x2[261] + x2[247] + x2[270] + x2[240] + x2[240] + x2[27] + x2[240] + x2[240] + x2[293] + x2[293] + x2[327] + x2[343] + x2[362] + x2[384] + x2[392] + x2[406] + x2[416] + x2[426] + x2[416] + x2[426] + x2[146] + x2[440] + x2[140] + x2[441] + x2[443] + x2[443] + x2[443] + x2[443] + x2[444] + x2[240] + x2[249] + x2[282] + x2[38] + x2[249] + x2[282] + x2[38] + x2[240] + x2[140] + x2

In [36]: @objective(model, Max, sum(points[i,j] * x[i,j] for i in 1:n, j in 1:m))

Out[36]: [Math Processing Error]

In [37]: print(model)

[Math Processing Error]

In []:	optimize!(model)
In []:	Problem Name : Objective sense : maximize Type : LO (linear optimization problem) Constraints : 118742 Affine conic cons. : 0 Disjunctive cons. : 0 Cones : 0 Cones : 0 Scalar variables : 59280 Matrix variables : 0 Integer variables : 59280 Optimizer started.
	Mixed integer optimizer started. Threads used: 4 Presolve started. Presolve terminated. Time = 0.91, probing time = 0.11 Presolved problem: 29640 variables, 11351 constraints, 98466 non-zeros Presolved problem: 0 general integer, 29640 binary, 0 continuous
	<pre>starting_11 = value.(x2) starting_11 objective_value(model)</pre>
In [*]:	<pre>csv_df[!, "Starting 11"] = value.(starter) csv_df[!, "Fantasy lineup"] = value.(x2)</pre>
In [*]:	csv_df
In [*]:	CSV.write("results.csv", csv_df)
In [*]:	using DataFrames
In [*]:	<pre>xij_df = DataFrame(value.(x), :auto)</pre>
In [*]:	<pre>xij_df[!, "Name"] = csv_df[1:n, "Column1"] xij_df[1, "Team"] = csv_df[1:n, "team"] xij_df[!, "Position"] = csv_df[1:n, "element_type"] xij_df</pre>

- In [*]: starting_11 = value.(x2)
 starting_11
- In [*]: objective_value(model)
- In [*]: csv_df[!, "Starting 11"] = value.(starter)
 csv_df[!, "Fantasy lineup"] = value.(x2)
- In [*]: csv_df
- In [*]: CSV.write("results.csv", csv_df)
- In [*]: using DataFrames
- In [*]: xij_df = DataFrame(value.(x), :auto)
- In [*]: xij_df[!, "Name"] = csv_df[1:n, "Column1"]
 xij_df[!, "Team"] = csv_df[1:n, "team"]
 xij_df[!, "Position"] = csv_df[1:n, "element_type"]
 xij_df
- In [*]: xij_df[!, "Starting 11"] = value.(starter)
 xij_df[!, "Fantasy lineup"] = value.(x2)
 xij_df

In [*]: CSV.write("Xij.csv", xij_df)